欧美日韩Aa在线直播_自拍青草99视频_日本一线产区和韩国二线_日韩.国产.噢美日韩精品综合观看_亚州四虎精品久久久_曰曰日在线_精品久久久av_精品欧美国产一区二区三区不卡_欧美亚洲日韩_天天ri网_国产精品看片直播_亚洲中文久久久久久精品国产_天天色天天日综合_久久久久久成人免费看A四叶草_丁香六月狠狠综合天香_永久的伊甸园_国产熟妇无码A片AAA毛片视频

當前位置:> 首頁 > 最新動態(tài) > 正文
【2025-02】組內論文在《Journal of Materials Chemistry A》發(fā)表,祝賀許夢杰

Mengjie Xu, Huiyue Wang, Xueying Wen, Huajian Liu, Guixin Hu, Qianyu Wei, Ran Niu*, Ruikun Pan*, Hui Zhang*, Jiang Gong*

Upcycling waste polypropylene separator into carbon nanotube for efficient interfacial solar-driven evaporation and hydroelectric power generation

Journal of Materials Chemistry A (2025) Accept.

The solar interfacial steam and power co-generation technology is a promising way of dealing with freshwater shortage and energy crisis. Nevertheless, there is a still significant struggle to build efficient evaporators for concurrent freshwater and power generation. In this contribution, we design Ni-Mo-Al hybrid catalysts for the controlled carbonization of waste polypropylene (PP) separator to prepare carbon nanotube (CNT) and subsequently construct CNT-based evaporators for interfacial evaporation and energy harvesting. The Ni-Mo-Al catalyst with the optimized molar ratio of 5-0.1-1 shows the best catalytic effect. The resultant CNT possesses high yield and purity, favorable crystallinity and graphitization. The CNT-based evaporator possesses good water absorption and low heat conductivity, and achieves a high evaporation rate (2.79 kg m-2 h-1) with high efficiency (98.3%). Furthermore, the evaporation system attains the output voltage of 350 mV, as well as a good sustainable output capacity. The result of density functional theory (DFT) explains that H+ diffuses faster than OH- and then accumulates at the top, thus leading to the potential difference between the top and bottom of the material, which in turn creates voltage. This work not only realizes the green upcycling of waste separators, but also builds low-cost, high-performance freshwater and power generation integrated devices.